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We study the effect of the reinjection probability distribution (RPD) on the scaling property
of intermittency via the renormalization group approach. When the lower bound of reinjection is
below the tangent point, the critical exponent has the well known form of (z — 1)/z independent
of the RPD. On the other hand, when the lower bound of reinjection is at the tangent point, the
critical exponent is (z 4+ — 2)/z if the RPD is of an algebraic form with exponent v and is (z —1)/z
if the RPD is fixed at the tangent point. The results are confirmed by numerical simulations.

PACS number(s): 05.45.+b

I. INTRODUCTION

Intermittency, which is a continuous route to chaos
among a few known [1-3], is a signal that alternates
randomly between a long regular (laminar) phase and
relatively short irregular bursts. Pomeau and Man-
neville [4] classified the intermittency in one-dimensional
maps into three types according to the way in which
a fixed point loses its stability. Typical local Poincaré
maps for type-I, -II and -III intermittencies are y,4+; =
Yntuy2+e (u,€ > 0), Yni1 = (L+€)yn+uys (¢,u,y > 0)
(5], and ynt1 = —(1 + €)yn — uyd (e,u > 0) or Y42 =
(142€)yn +2u(1+2€)y2 (e,u,y > 0), respectively. Type-I
intermittency has an algebraic type of characteristic re-
lation between the average laminar length (I) and the
channel width €, (I) oc €~/2. For type-II and -III inter-
mittencies, the origin is a fixed point and therefore the
lower bound of reinjection (LBR) should be above the ori-
gin for the intermittency to appear. The characteristic
relation of these types of intermittency is (I) o< In(1/€) in
the limit e(« LBR) — 0. We note that, among the three
types of intermittency, type-I intermittency alone has a
scaling property since it has an algebraic type of char-
acteristic relation, thereby allowing the advent of renor-
malization group (RG) analysis.

RG analysis of a generalization of type-1 intermit-
tency was first performed by Hirsch, Nauenberg, and
Scalapino [6]. They found that there exists a univer-
sal map ynt1 = f*(yn) for intermittency, which is in-
variant under the Feigenbaum doubling operation [1]
Tf*(y) = af*(f*(y/a)) = f*(y) and satisfies the bound-
ary condition f*(y — 0) = y + uly|?, where z > 1.
They further classified the perturbations to f*(y) ac-
cording to their relevance. A function fe(y) = f*(y) +
ehx(y)hr(y) if hx(y) is an eigenfunction with eigen-
value A of the linearized doubling operator L;hy(y) =
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o f* (f*()ha(y) + ha(F*(¥))} = Aha(ay). Hirsch et
al. solved these equations using series expansion tech-
niques, and Hu and Rudnick [7] found exact solutions
using an implicit function technique. The results are
as follows: f*(y) = [ly|~ GV — d]7VE; hy(y) =
] e g
1)]?/(z—1)}/(pu); a = 2V/(E=1). = 2(p+1-2)/(z—1)
where d = (z — 1)u and hy(|y| — 0) = |y|?z7P71 = |y|2.

With these results Hirsch et al. reached the char-
acteristic relation (I) « €~ with the critical exponent
v = (z — 1)/z for the constant eigenperturbation [8].
Note that, for nonconstant eigenperturbations, the LBR
should be above the origin as in type-II and -III intermit-
tencies and therefore the characteristic relations are not
of an algebraic form in the limit ¢ — 0. In other words,
only the case of constant eigenperturbation has a scaling
property and can be analyzed via the RG method.

In both Pomeau and Manneville’s seminal work and
Hirsch et al.’s RG analysis, the authors did not consider
seriously the effect of the reinjection probability distri-
bution (RPD) on the scaling properties of intermittency.
It was, however, recently shown that [9], via numerical
study of an example of type-I intermittency, if the LBR
is at the tangent point, there appear various types of
characteristic relation such that (I) x e ™ (0 <v < 1/2)
when the RPD is a decreasing function of y and (I)
In(1/€) when the RPD is uniform. Such an algebraic
form of characteristic relation implies that, even in the
case of nonuniform RPD, some scaling properties exist
and therefore an RG analysis is in order. In this Brief
Report we derive the formula of the critical exponent for
each case where the LBR is below or at the tangent point,
by considering not only the universal map but also the
effect of the RPD. We also examine numerically three
maps of which each critical exponent is 1/2, 3/8, and
1/4 when the LBR is at the tangent point. The results
of RG analysis agree well with the numerical ones.
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II. CLASSIFICATION OF THE REINJECTION
PROBABILITY DISTRIBUTION

We first classify the RPD according to the position
of the LBR. We note that the laminar lengths for all
reinjections below the lower bound of the gate are just
the same as the laminar length for the reinjection at the
lower bound of the gate itself (the gate set an acceptance
|y| < c on deviations in the laminar phase). The average
laminar length () for a given RPD P(y) is therefore given
by

W) =U-cc) [ Plym)dyn + / “U(Yins ©) P (Uin) i,
A —

(1)

where —A is the value of y;, representing the LBR and
{(Yin, ¢) is the laminar length for a reinjection at y;,. In
case that the LBR is below the tangent point (the origin),
the contribution of the second term on the right-hand
side of Eq. (1) becomes negligible in the limit e < ¢ — 0
and therefore all RPD’s have the same effective RPD,

P(y) =6(y + o). ()

We here normalize P(y;y), ffc P(yin)dyin = 1. When the
LBR is at the tangent point, Eq. (1) simply reduces to
) = foc {(Yin, €) P(Yin)dYin. Since we can assume without
loss of generality that the RPD is a decreasing function
of y [10] and the only leading order term of the RPD is
relevant in the limit € < ¢ — 0, the RPD P(y) can be
written in general such that

1
Py)= o ) 3)
where 0 < v < 1 [P(y) is non-normalizable if v > 1].
The case where the LBR is above the tangent point is of
little interest since the laminar length becomes zero as

e c— 0.

III. DERIVATION OF THE CRITICAL
EXPONENT OF INTERMITTENCY

We now derive the critical exponents of intermittency.
A given difference equation y,+1 = f(y»n) can be replaced
by a differential equation

dy

=7 = — 4
7 = TW -y (4)
in the long laminar length approximation. Here [ is the
number of iterations in the laminar phase. The average
laminar length (I)[f] for the map f(y) is

c dy

dYin Ps (Yin) s (5)

= | R OET

where Pg(y) is the RPD for f(y). Since (I) is related to
the number of iterations and f?(y) = f(f(y)) requires
only half as many steps as f(y), (I)[f%] = (1/2){I)[f] if
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Py2(y) = Py(y), which is the case in general.

It can be shown that the normalized RPD’s for
f(y), f%(y), and Tf(y) are all the same by using the
Shaw relation [11] which determines the RPD. The RPD
is determined not by the local Poincaré map f(y) but by
the global map F(A;z), from which the local Poincaré
map comes. Here A is a tunable parameter and y =
—(z—=z.)/[0F (A, z.)/OA] where x. is the tangent point.
The Shaw relation for the map f(y) is Ps(y)|dF/dy|,, =
Ps(y;) where F(y;) = y. Here we use the Einstein sum-
mation convention. We may get Pf(y) up to normal-
ization by solving this equation. We note that Ps(y)
can also be expressed in terms of the probabilities at
the points two iterations before, i.e., P¢(y)|dF?/dy|,, =
Ps(y;) where F?(y;) = y. Since this equation is the
same as that of Pj2(y), the RPD’s for f(y) and f2(y) are
equivalent up to normalization and become exactly the
same after normalization. We next discuss Pr¢(y). Note
that y,+1 = TF(y,) = aF?(y,/a) can be rewritten as
(yn+1/@) = F%(yn/a); that is, that the shape of TF(y) in
the Yp-yn+1 plane is the same as that of F2(y) in the ay,-
ayYn+1 plane. Since the RPD is determined by the shape
of the first return map we can immediately infer that
Pr¢(ay) = aPp(y) = aPs(y) or Prs(y) = aPs(y/a),
and therefore, for general forms of effective RPD’s in Egs.
(2) and (3), the normalized Prs(y) is equal to Pf(y), i.e.,
Prs ()] [% Prs(y)dy = P;()/ J. Pr(y)dy.

In order to derive critical exponents using the already
given f*(y) and hy(y), ({)[T f] should be related to (I)[f]-
Since Prys(y) = Py(y), (I)[Tf] is given by

WA = [ dysnPy(yin) i T

—c W Tf(y) —y
c/a c/a dy
= d inP, in For N -
o dwmPrleva) [ il ©

It is very likely that the average laminar length for a given
map and RPD is independent of the scaling of the gate
as long as € is small enough. We present some examples
to support this argument. In Fig. 1, relations between
the average laminar length and the size of the gate are
drawn in log-log scale, where the local Poincaré map is
the typical one of type-I intermittency with z = 2 and
u = 1. The RPD’s for lines I and II and for lines III
and IV are §(y + c) and 1/,/y, respectively. The values
of € for lines I and III and for lines I and IV are 10~2°
and 1071%. These lines show that the smaller the value
of €, the longer the length of the flat region. That is, the
average laminar length is maintained constantly though
the gate size is reduced, in the limit ¢ — 0. If we accept
the numerically supported argument, the final form of

(OITf]is

OITfl= aﬁc dYin Ps (yin) /'c Wj;y—_y’ (7)

which is essential to calculate critical exponents of inter-
mittency.

By using the relation in Eq. (7) we can obtain the
formulas of critical exponents for the cases where the
LBR is below and at the tangent point. We first consider



53 BRIEF REPORTS

the case where the LBR is below the tangent point. As
mentioned above, in this case, the effective RPD is fixed
at the lower bound of the gate in the limit ¢ < ¢ — 0.
Note that I(—c,c) = 2{(0,c) due to the symmetry of the
local Poincaré map and therefore

[ c dy
dyind(y + Y
-[—c Y (y C) Yin f(y) -y

22/_Cdyin5(yin) 'C%- (8)

Since é(ay) = (a)7'(y), D[Tf] = a ta([f?] =
27HD)[f]. After n iterations of this step we get (I)[f] =
2(BH[T™f] = 2™(D[f* + A"ehr]. If we set A\"e = 1,
(O)[f* + h,] is independent of € and the ¢ dependence of
(I)[f] is isolated to the prefactor 2. Since A = 2%/(=1)
for amap f(y) = f*(y)+e, the critical exponent ¥[LBR <
0] defined by (I)[f] x ™" is

JILBR < 0] = 2= 1.

9)

This is the result that Hirsch et al. obtained under the
assumption of homogeneity.

We next consider the case where the LBR is at the
tangent point. When P(y) = 1/y” (0 < v < 1), we
obtain

O] = @)™ (W[TF] (10)

from the relation in Eq. (7). Since (22771)» =
(27)(z=7=2)/(2=1)  e(*+7=2)/= for constant eigenpertur-
bation if we set A™e =1, the critical exponent v[LBR = 0]
is

v[LBR = 0] = zty-2 (11)
z
12 — - T T

(logio())

Laminar Length

5 10 15 20 25
Gate Size (-log;oC)

FIG. 1. Average laminar lengths vs the size of the gate for
Yn+1 = Yn + Y2 + €. The RPD’s for lines I and II and for lines
III and IV are &(y + ¢) and 1/,/y, respectively. The values
of € for lines I and III and for lines II and IV are 1072 and
107'° respectively. The smaller the value of €, the longer the
length of the flat region.
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This is our main result. When the RPD is P(y) = é(y),
it has been shown that the critical exponent is given by
Eq. (9).

IV. NUMERICAL RESULTS

In order to verify whether our reasonings used in the
derivation of the critical exponents are correct, we com-
pare, for three maps, the numerically obtained critical
exponents with the ones obtained by the RG method.
The first map is a quartic one, z,+1 = f4(fB)(z,))
where f(4)(z) = 44z(1 — z) and f(B)(z) = 4Bz(1 — z).
The second map has a similar form to that of the first
map except that f(4)(z) = A[l — 16(z — 1/2)]* and
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FIG. 2. Average laminar lengths vs e. The local

Poincaré map for these diagrams is the typical one of
type-I intermittency. The RPD’s for (a), (b), and (c) are
(y+ A)"Y2 (y + A)"%/% and §(y + A), respectively. The
critical exponents for these RPD’s have the same value of 1/2
as long as the LBR is below the tangent point. When the
LBR is at the tangent point, however, the critical exponent
depends on the RPD: 1/4, 3/8, and 1/2 in (a), (b), and (c),
respectively.
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f®B)(z) = B[1 — 16(z — 1/2)]*. The third map has the
same shape as that of the first map except in the range
a < ¢ < b, where a and b are some constants. In that
range 41 has a constant value z*. Local Poincaré maps
for these maps, which are obtained by the Taylor expan-
sion near each tangent point, have the typical form of
type-I intermittency if they are expressed in terms of the
coordinate y whose origin is the tangent point. Detailed
procedures to obtain the local Poincaré map, the RPD,
and the critical exponent, etc. are shown in our previous
paper [9]. The RPD’s obtained by solving the Shaw re-
lation as well as by numerically counting reinjections are
(y+ A)"Y2 (y+ A)=3/4, and §(y + A), respectively.
In Fig. 2(a) the characteristic relations for the first
map are drawn. They are obtained in the range of small
€ (= B. — B) for typical values of A. An intermittency
appears last at the critical value B, for a given value
of A, at which the tangent bifurcation occurs. For the
first map there are analytic relations among B,., A4, and
the tangent point y.: B. = [—9vA + 84%/2 4 (44 —
3)3/2]/16/A(A — 1) and y. = 2/3 — (4 — 3/B.)'/?/6.
Line I is the characteristic relation whose critical ex-
ponent is ¥ = 1/2 obtained for A = 0.9415, at which
the LBR is below the tangent point. Line II show-
ing v = 1/4 is obtained for A = 0.94146195...,
at which the LBR is at the tangent point. In Fig.
2(b) the characteristic relations for the second map are
drawn. Line I representing v = 1/2 is obtained for
A =0.98116 and B, = 0.88700979..., at which the LBR
is below the tangent point y. = 0.67520249.... Line II
showing v = 3/8 is obtained for A = 0.98115325...
and B, = 0.88700835..., at which the LBR is at the
tangent point y. = 0.67520384.... In Fig. 2(c) the
characteristic relations for the third map are drawn.
For this map the tunable parameter to adjust the po-
sition of LBR is z*. The values of A and B are fixed:
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A = 0.9416 and B = 0.83023023..., at which the tan-
gent point y. = 0.56304549.... We also fix the values a
and b to be a = 0.743 and b = 0.874. Line I representing
v = 1/2 is obtained for * = 0.9416, at which the LBR
(y = 0.5621997...) is below the tangent point. Line II
showing v = 1/2 is obtained for z* = 0.94147930..., at
which the LBR is at the tangent point.

We note that, in all the above examples, the critical
exponent is 1/2 as long as the LBR is below the tangent
point although the RPD’s are (y + A)~Y/2, (y+ A)~3/4,
and 6(y + A), respectively. This supports the theoret-
ical result since z = 2 in these examples and therefore
v[LBR < 0] = 1/2. We also note that, in the case that
the LBR is at the tangent point, »[LBR = 0] = 1/4, 3/8,
and 1/2 since v = 1/2, 3/4, and P(y) = §(y) for the first,
second, and third maps.

V. CONCLUSION

We have shown explicitly that the critical exponent
depends not only on the universal map but also on
the RPD. When the LBR is below the tangent point
all RPD’s reduces to the one form of effective RPD,
P(y) = 6(y + ¢). From this, the critical exponent is
obtained such that v[LBR < 0] = (z — 1)/z. On the
other hand, when the LBR is at the tangent point the
effective RPD is 1/y” (0 < v < 1) or §(y). In this case,
V[LBR =0] = (z+v—2)/z or (z—1)/2.
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